

AM Technologies

SLM

Powder Bed Fusion by Laser (PBF-LB)

LMD Directed Energy Deposition by Laser (DED LB)

WAAM Directed Energy Deposition by Arc (DED Arc)

You have an idea to use a 3D printed part.

What now?

What is the most suitable technology?

What material to choose?

What material properties to use in my design?

Do parts need to be post-treated?

How do I handle powders?

Protection Anteriority AM suitability

Manufacturing :

Monitoring solutions Follow up procedure Quality assessment

Post-Treatments :

Bulk (Heat, UV,...) Surface (polish, coatings) Cavities cleaning Machining advices

Idea :

characterization Handling procedure **Testing & development**

Optimization :

Topological optimization Simplify assembly Textures, labeling Function integration

Dimensions (3D scan) Density Mechanical properties Aaina

Technology :

Selection **Future trends** Advice Process chain integration

Processability :

Reduce wastes Define orientation Integrate post-treatments Process simulation

driving industry by technology

Design the part

• Printability

Start from part functions

Functions

<u>Traditional</u> light design

Functional light design

Topology optimization

Design

Topology optimization

- 1. Topology optimization linked to part orientation in AM machine
- 2. Requires realistic load case
- 3. Importance of boundary conditions
- 4. Lattice vs. topology optimization

Technology Selection

SLM/LMD

WAAM/LMD

- 1. Printing of small features/large parts
- 2. Free hanging sections (supports?)
- 3. Inclined walls
- 4. Need for powder removal
- 5. Required accuracy
- 6. What post-processing and when

Technology Selection

Торіс	L-PBF	EBM	Binder Jetting	FDM	DED-LB	DED-WAAM	Sheet lamination
Feedstock	Metal powder < 60 μm	Metal powder < 80 μm	Metal powder up to 100 μm	MIM feedstock, wire or pellet	Metal powder < 150 μm or wire	Metal wire ø 0.8-1.6 mm (multi-wire)	Metal sheets
Bonding means	Laser	Electron beam	Polymer binder	Extruded in heated nozzle	Laser	Electric arc	Friction, mechanical
Part size	Std : 250 mm Max : 1000 mm	Std : 200 mm Max : 380 mm	Std : 100 mm Max : 800 mm	Std : 100 mm Max : 300 mm	Up to several m (robot vs CNC)	Up to > 10 m (robot on rail config.)	Up to 4m
Min wall thickness	0.3 mm	0.8 mm	1 mm	1.2 mm	1 - 2 mm (focal spot, material)	2 - 3 mm (ø wire, material)	Depends
Strength	AccuracySurface finishFine details	 Limited stress Handle bulky parts Low contamination Manufacturing speed 	Limited stressAtm. ConditionsHigh speed	Limited stressCleanAffordable	 Medium size AM on existing part Multi-material and FGM 	 High deposition rate Lower investment/m² Integrate substrate Good density 	 Sheet mech. properties As-built accuracy Sensor embedded Multimaterials
Weakness	Supports removalInternal stressesPost process	 Powder cake removal Limited material range As-built roughness 	 Needs sintering (Shrinkage 20%) OR Infiltration (weakness infiltrant) 	 Shrinkage 20% Needs sintering Slow technology 	 No supports Limited overhang and precision Surface finish (waviness) 	 Low part complexity and surface finish High HI, residual stresses and distortions Under development 	- Slow process
Applications	 Large range of thin, accurate parts Parts with cavities, channels 	 Small to medium bulky organic structural components without cavities 	 Small parts, with quite thin walls in huge quantities 	- Small parts, with quite thin walls in small quantities	 Parts of medium Cladding, repair Customization of existing parts 	 Large structural parts (aerospace, marine) Large machine parts, tooling (machining) 	- Quite uncommon
Suppliers	SLM Solutions Concept Laser 3D Systems EOS Trumpf AddUp	Arcam (GE) EBAM (Sciaky)	Digital metal ExOne Desktop Metal HP	Markforged Desktop Metal 3DVigo AIM3D Pollen	Optomec Trumpf DMG Mori Seiki BeAM Hornet (modular)	Gefertec Prodways Hornet (modular)	Stratoconception

Material Selection

https://www.sirris.be/nl/inside-metaladditive-manufacturing

1

© Sinta + VIS INSIDE Metal AM - WP2 Deliverable D2.

Material selection (steel) linked to implemented technology
 Doesn't need to be the same as conventional part

L	M/LMD		
	Limited	material	choice

WAAM

Mostly welding consumables

316L
304
H13
M300
15-5PH
17-4PH
CL 91RW
CX
BLDRmetal L-40
M789
M3
Invar36

Material Selection

Powder quality features

- ✓ Particle size and distribution
- ✓ Shape
- ✓ Flowability
- ✓ Entrapped gas

SLM vs. LMD

Material Selection

Wire quality features

Source: National Standard

Source: Modenesi & de Avelar JoMPT 86, 226-232 (1999)

- ✓ Cast and helix (feedability, arc stability)
- ✓ Diameter tolerance (mechanical, electrical)
- ✓ Chemical composition
- ✓ Surface condition (contamination/defects)
- ✓ Internal condition (homogeneity/defects)

Design the part

- Requires collaboration between an application expert and a 3D printing expert.
- Keep in mind postprocessing steps!

Print the part

Printability

Lessons learned from demonstrators - SLM

- 1. Reduce overhang
- 2. Avoid surface orientation close to the limit
- 3. Avoid large and long horizontal sections
- 4. Take care about thermal dissipation
- 5. Take care of powder removal
- 6. Powder spreading

Process Simulation, SimuFact

Lessons learned from demonstrators - LMD

- 1. Reduce overhang (e.g. 15° if 2D positioning)
- 2. Avoid "hot spots" (start positions, speeds...)
- 3. Optimize paths for intersections/filling
- 4. Optimize "cold" displacements to minimize powder waste

Powder Quality

Process oriented powder analysis

Aluminum powder density by GranuPack

- ✓ Oxidation
- ✓ Humidity
- ✓ Size distribution
- ✓ Spreadability
- ✓ Segregation

Build up a history for your printing equipment in your environment and define a threshold for powder acceptance

Process Parameters

What are good settings *for your machine*? What *material properties* do you get?

SLM - Process Parameters (17-4PH)

SLM - Process Parameters (17-4PH)

AB Hardness vs. energy density

	Job 190710	Job 190906
Scan speed	700-1200	200-900
Laser Power	355-395	175
Av. Hardness [HV10]	333 (≈35 HRC)	309 (≈32 HRC)

SLM/LMD - Process Parameters (17-4PH)

SLM:

Step 1: optimize for density
Step 2: optimize for speed
(Step 3: optimize for hardness)

LMD: (similar to SLM) Step 1: optimize for density (99.95%) Step 2: optimize stability/HI control

LMD - Process Parameters (17-4PH)

Test	P-laser	V-laser	P/V	Powder flow	Wall height
1	2000	1	2	40	6.77
2	2500	1	2.5	40	6.55
3	3000	1	3	40	7.64
4	2500	1	2.5	40	8.32
5	2000	0.75	2.7	30	7.15
6	2000	1.2	1.7	50	4.4
7	2500	1.2	2.1	50	4.4
8	3000	1.2	2.5	70	10.2

HV2 of 17-4PH in AB condition (LMD) Center: 343-352 (1) vs 361-396 (7)

For steels & stainless steels

- Set average power/flow rate and change speed
 - for modifying layer height (*)
- Repeat (*) for various power/flow rate for
 - screening processing window (stability & porosity)
- > Track width mainly acc. to focal spot
- Typically 30% overlap (multi-pass)
- > Optimized paths & HI control (acc. features)

WAAM - Process Parameters

G3Si1 Ø1,2mm

For steels & stainless steels

- Select wire ø for wallth. & productivity
- ➤ ≠ synergic curves & advanced U/I control
 - $\rightarrow \neq$ width & height for same WFS/TS
- > Typically limit TS to avoid humping
- Respect WFS/TS for approx. constant HI
- Optimized paths & overlap (multi-pass)

Process Parameters

- SLM Variation in hardness as a function of print parameters, but less significant as compared to variations in part density.
- Properties can deviate from those in powder data sheets.
- LMD/WAAM Hardness values in 'as-built' condition are fluctuating along the build direction.
- > Anisotropy.
- Influenced by post-build heat treatments.

Keep track in an internal database

- ✓ Machine
- ✓ Date

...

- Parameters
- ✓ Material
- Build configuration
- Properties

What are good settings *for your machine*? What *material properties* do you get?

Feedback on material properties to use in design phase.

Quality Check

- Destructive testingNon-destructive testing
- ✓ Dimensional tolerances✓ Material properties
- ✓ Tomography

Perform a first check prior to finishing to avoid unnecessary costs.

Finish the part

- Locally vs globally
- Bulk (Heat, HIP,...)
- Surface (polish, coatings)
- Cavities cleaning
- Machining

Heat Treatment (17-4PH SLM)

- Tune material properties: What properties do you want?
- Reduce residual stresses

H900 Hardness vs. energy density

Surface Finish

WAAM wall surface

Which surface finishing method to apply?

- AM technology (roughness vs waviness)
- > Application (abrasion, aesthetic ...)
- Material & geometry (cavities, edges...)
- Environmental (disposal chemicals, slurry...)

Specifications?

- Roughness/waviness vs peaks/valleys
- Achievable Ra 4-8μm (SLM), 10-15μm (LMD)

Pronounced WAAM waviness reduced by :

- > Shielding gas (couple % He)
- Wire composition (melt pool viscosity)?

Surface Finish

-50.0

- Comparison on SLM and LMD wall surfaces
- Sand blasting (good preparation, Ra 16µm)
 - mainly peaks removed
- Tribofinishing (fixed sample & ceramics)
 - slow, smoothens entire topology
- Electrolytic polishing (EP)
 - organic electrolyte works best, mainly high freq. roughness removed
- Chemical polishing (CP)
 - slower than EP for 17-4PH
- No significant difference between AB and H900!
- > Typical finishing cycle 1-2h
- For WAAM typically local or general machining

Quality Check

- ✓ Dimensional tolerances
- ✓ Material properties
- ✓ Tomography
- ✓ Surface Quality
- ✓ Residual stresses

 ✓ Potentially also to be done before post-processing

You don't have to make this journey on your own.

Knowledge and experience is available within Belgium to support you in your journey.

What's next – INSIDE AM project

You'd like to discuss a specific topic with us ? Request a personal meeting and mention your topic: <u>jeroen.tacq@sirris.be</u>

Recording & slides will be made available through mail

Don't miss out on our final event! (foreseen January 2021) https://www.sirris.be/nl/inside-metal-additive-manufacturing

How to contact us:

driving industry by technology

jeroen.tacq@sirris.be

fleur.maas@bil-ibs.be

frederik.hendrickx@crmgroup.be