

Short introduction to surfaces of SLM and LMD

Decomposition of the surface profiles

Fig. 1-1 Schematic Diagram of Surface Characteristics

- → It is important to consider which components of the surface profile need to be removed and for what reason
- → ≠ AM technologies lead to ≠ surface morphology

Surface roughness is linked to technique

The thinner the printed layer and powder size, the smaller the surface features

Initial roughness - SLM

Scattering of initial sample roughness:

Ra values in the range of 8 to 18µm

→ probably high SLM roughness due to
unmolten particles (would require some
sandblasting)

- Ra values around 20μm
- Rz values around 100μm
- Rt values around 140μm

• Significant surface waviness in the range of 0.8 to 2.5mm, due to construction

©CRM Group - All rights reserved for all countries. Cannot be disclosed, used, or reproduced without prior written specific authorization of CRM Group - CONFIDENTIAL - Privileged Information - CRM Group proprietary information.

Initial surface state - Summary

- The profile of the specimens is a mixture of a waviness and the actual roughness of the surface \rightarrow must be uncoupled
- # LMD shows roughness values of the order of 20 μm. However the waviness is much higher fue to the layer thickness (~500 μm)

Surface post-processing of SLM by electropolishing

The technique

- Material removal achieved through a 'controlled accelerated corrosion' process
- Appropriate electrolytes (well formed diffusion layer) allow for faster dissolution of the peaks → surface smoothing

- Two polishing electrolytes were tested on the samples of INSIDE
 - ** Polishing conditions (Temperature, current density, time) were selected based on the technical data sheets and knowledge already present at CRM.
- # Trials on discs carried out using a rotating disc electrode (RDE)
 - ****** Allows for reproducible hydrodynamics
 - * Allows for efficient heat transfer \rightarrow controlled temperature
 - # Small samples surface (electrode) → limited amount of electrolyte needed

Example of surface profiles on SLM parts for As-built and Heat-treated states

Before polishing

After 90min polishing

- Significant smoothing of the surface (peak removal)
- Some residual waviness which is much more difficult to remove by electropolishing
- Similar behaviour on as built and heat treated samples
- Final roughness Ra 4-6μm

Electrolyte 1 : mineral acid mix

Developed for stainless steel grades, works on some alloyed steel as well.

- Poor polishing performances at low and high current density (somewhat better at low c.d.)
- Similar effect as chemical polishing i.e. diffusion layer not well formed and less selective peak removal
- Minimum roughness achieved after removal of 140μm : 8μm Ra

Electrolyte 2 : organic-based electrolyte Developed for tool steel.

- Fairly good polishing performances under the selected polishing conditions
- No significant impact of H900 heat-treatment on polishing performances
- Minimum roughness achieved after removal of 140μm (90min): 4μm Ra

©CRM Group - All rights reserved for all countries. Cannot be disclosed, used, or reproduced without prior written specific authorization of CRM Group - CONFIDENTIAL - Privileged Information - CRM Group proprietary information.

Electrochemical polishing

Electrolyte 2 : organic-based electrolyte Developed for tool steel.

Good control on (average) material removal rate for a given current density

Surface post-processing of LMD by electropolishing, chemical polishing & tribofinishing

Electrochemical polishing - Sandblasting

- Sand-blasting is very important as a pre-treatment in order to remove the surface oxide & is very fast method with relatively low environmental impact
- The presence of the surface oxide film is very detrimental to the polishing homogeneity

Sandblasted

Electrochemical polishing - Sandblasting

Sand-blasting:

- Effectively removes oxides and poorly melted particles from the surface
- Smoothens some large peaks (but obviously not the valleys!)
- Creates an additional low-wavelength roughness
- Ra decreases to 16μm

- Finishing conditions can be transferred from SLM to LMD parts
- LMD samples are characterized by a larger waviness, which is more difficult to remove
- Peaks are removed efficiently by EP (after initial sandblasting)
- Low-wavelength roughness is efficiently removed, which leads to a very bright and shiny surface finish
- After 1h of EP the Ra is already reduced to 14μm

Application to sand-blasted LMD samples

- After 2.5h of electropolishing: Ra decrease to 6-7 μm (vs ≈ 1h for SLM surface)
- After +/- 2h similar behavior on as built and heat-treated samples

Tribofinishing

- Samples attached to the central shaft
- Ceramic abrasives flow along the rough surfaces
- Long treatment times (on hard metals) but very robust.

Tribofinishing

- Finishing conditions can be transferred from SLM to LMD parts but longer treatment times are needed
- Waviness is efficiently removed
- Dull-grey surface finish.

- Smoothing is a slow process
- Saturation is observed after ~20h.
- Roughness decreases down to ~3µm

On 17-4PH, sand-blasting does not influence the polishing kinetics

On 316L, sand-blasting has a significant impact on the polishing kinetics

316L LMD

Tribofinishing - Summary

- Effective but slow ($\sim 0.1 \mu m/min$) \rightarrow requires long treatment times ($\sim 20h$)
- Removes peaks preferentially (minimum material waste)
- Limitations:
 - Rounding of edges
 - Some areas might not be accessible to abrasives
 - Valleys are poorly/not treated

LMD samples

- Electrolyte validated for 316L steel
- Limited surface smoothing is observed
- Not very efficient on LMD samples
- on 17-4PH also not efficient

INNOVEREN & ONDERNEMEN

[mm]

LMD post-processing - Summary

Electrochemical polishing:

- * Similar behaviour for 17-4PH and 316L independently of the heat treatment
- **#** Impossible to remove waviness.
- Need for some sandblasting

Tribofinishing:

- # Tribofinishing effectively removes the waviness after quite long (automated) treatments up to 20h
- ****** Removes peaks preferentially
- * Chemical polishing: not well adapted

Surface post-processing of LMD - Combination of techniques

Sandblasting +
Electropolishing +
Tribofinishing

Sandblasting +
Tribofinishing +
Electropolishing +

Tribofinishing + Electropolishing

8h Tribofinishing (TF)
30min Electropolishing (EP)

 $Ra: 4.91 \ \mu m$

3h Electropolishing (EP)
2h Tribofinishing (TF)

Ra: 4.01 μm

LMD post-processing combination - Summary

- ** Sand blasting as a first step provides for homogeneous action of the subsequent electropolishing treatment (oxides etc. removed)
- **EP** after TF improves drastically the visual quality and cleanliness
- # EP before TF allows decreasing the duration of the finishing process

Polishing of rotor demonstrators

Polishing of demonstrators - SLM rotor

- The whole part was first sand-blasted.
- Tribofinishing and electropolishing were compared on both ends of the rotor.

Polishing of demonstrators - SLM rotor

• Silicone masks were applied on the parts in order to preserve selected areas during tribofinishing and electropolishing

Polishing of demonstrators - SLM rotor

- After 4h of tribofinishing, most surface peaks are removed. The surface feels soft (to the finger). Valleys are untouched. The surface is dull.
- 1h of electropolishing results in a wavy surface with no residual nanoroughness. The surface is bright.

Polishing of demonstrators - SLM rotor

	Ra (µm)	Rsk
SB + TF (4h)	8.4±1.7	-0.4 ± 0.2
SB	12.5 ± 4.1	0.6±0.4
SB + EP (1h)	4.0 ± 1.2	0.0 ± 0.1

- After tribofinishing more valleys are left (i.e. preferential peak removal) \rightarrow Rsk < 0
- After electropolishing valleys & peaks are similarly represented $\rightarrow Rsk \approx 0$

Polishing of demonstrators - LMD rotor

thout prior written sinformation

Polishing of demonstrators - LMD rotor

SB + TF SB + TF + EP SB

- Cumulative surface treatments were also applied on the LMD rotor (progressive SB-TF-EP)
- Only TF +/- 31h, EP +1h

CRM Grou

Polishing of demonstrators

- LMD rotor

- Standard deviation calculated on 4 samples (i.e. black bars i/t graphs)
- Change in Rsk indicates removal of peaks vs valleys (i.e. red arrows)

Polishing of demonstrators - LMD rotor

- Surface treatments can be cumulated in a synergetic way to achieve a good surface finish on LMD parts
 - Sand-blasting efficiently cleans the surface and removes thick oxides
 - Tribofinishing eliminates long-wavelength roughness
 - Electropolishing removes the nano-roughness and brightens the surface
- In our case, a longer tribofinishing time should have been selected

Post-processing of demonstrators - Summary

- ****** Combining surface treatments provides better results
- **Sandblasting + Electropolishing provides the best results for SLM**
- # A combination of Sandblasting + Tribofinishing + Electropolishing provides the best results for LMD

