

Economic Impact Assessment of Hydrogen generated from Offshore Wind:

A Case Study for Belgium

UD

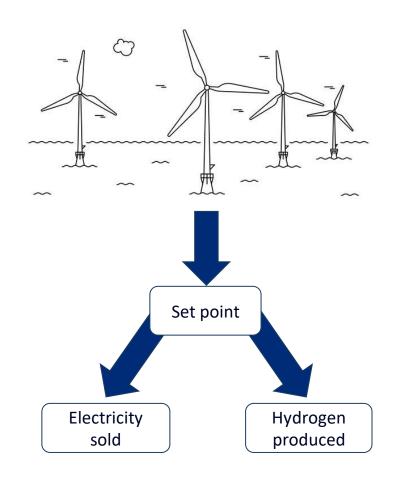
GABORIEAU Maëlig – CEYHAN YILMAZ Ozlem – DYKES Katherine

INTRODUCTION

- Green hydrogen is a great way to store energy and help decarbonize industries (transport, agriculture,...).
- Green hydrogen cost must be evaluated to ensure competitiveness and economic viability.
- This domain is recent, and flexibility must be included to adapt to future progresses.

Objectives:

- Develop a detailed and flexible cost model for HRES
- Use this cost model on a selected case study


MAIN ASSUMPTIONS

Hybrid Renewable Energy System

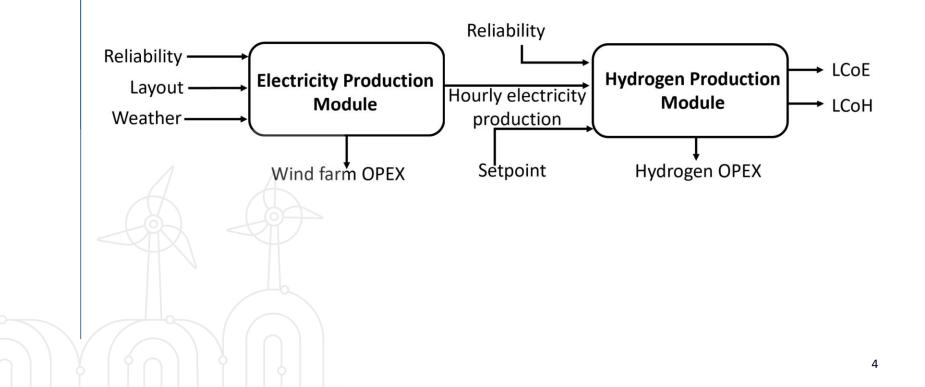
- The wind farm foundations are **bottom-fixed**.
- Hydrogen production plant is **onshore**.
- The quantity of electricity sent to the hydrogen plant is **modifiable** (based on a set point).
- The electrolyser response is supposed to be instantaneous.
- A stack efficiency **degradation** is modelled.

HRES Principle

COST MODEL

CAPEX Module

Offshore Wind Farm:


- Balance of Plant cost
- Turbine cost
- Installation Cost

Hydrogen production plant:

- Balance of Plant cost
- Electrolyser cost
- Installation Cost

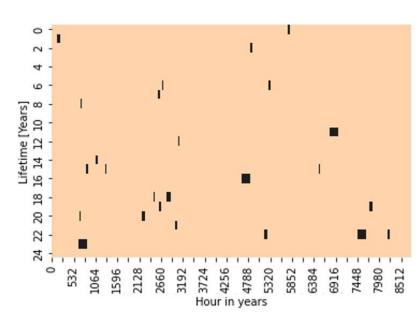
OPEX and Revenue Module

A schedule-based model simulating every hour of the system's operational lifetime:

STUDY CASE

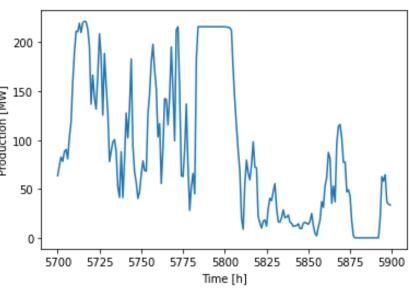
Mermaid wind farm

Country	Belgium
Developer	Otary
Number of turbines	28
Capacity	235MW
Hub Height	107.5m
Distance to hydrogen plant	54km


Virtual hydrogen production plant

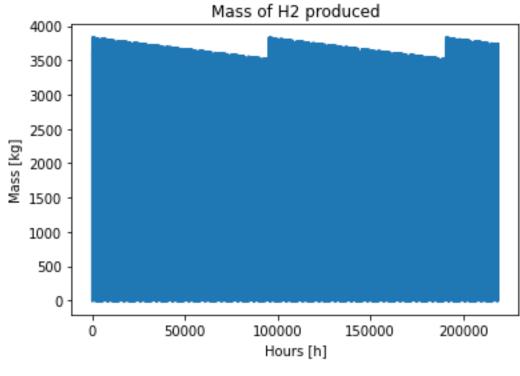
Location	Zeebrugge	
Capacity	235MW	
Type of electrolysis	Polymer Electrolyte Membrane	
Lifetime	25 years	
Stack operational lifetime	85,000 hours	
Initial efficiency	62%	
Efficiency degradation	0.1% every 1000 hours	

OPEX AND REVENUE MODULE


1-Simulate Failures

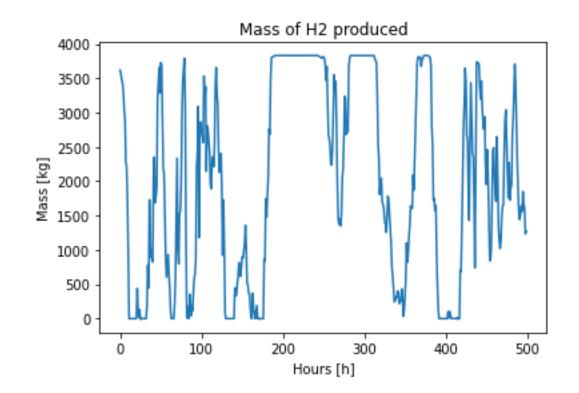
2-Find Wind Farm Availability

3-Evaluate Production



Average hourly production: 96.3 MWh

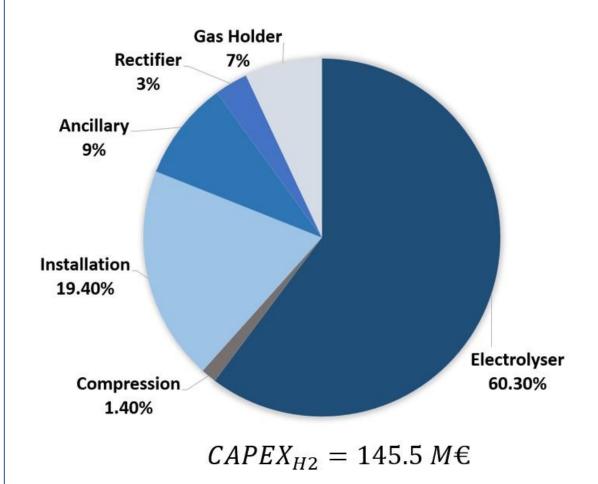
OPEX AND REVENUE MODULE



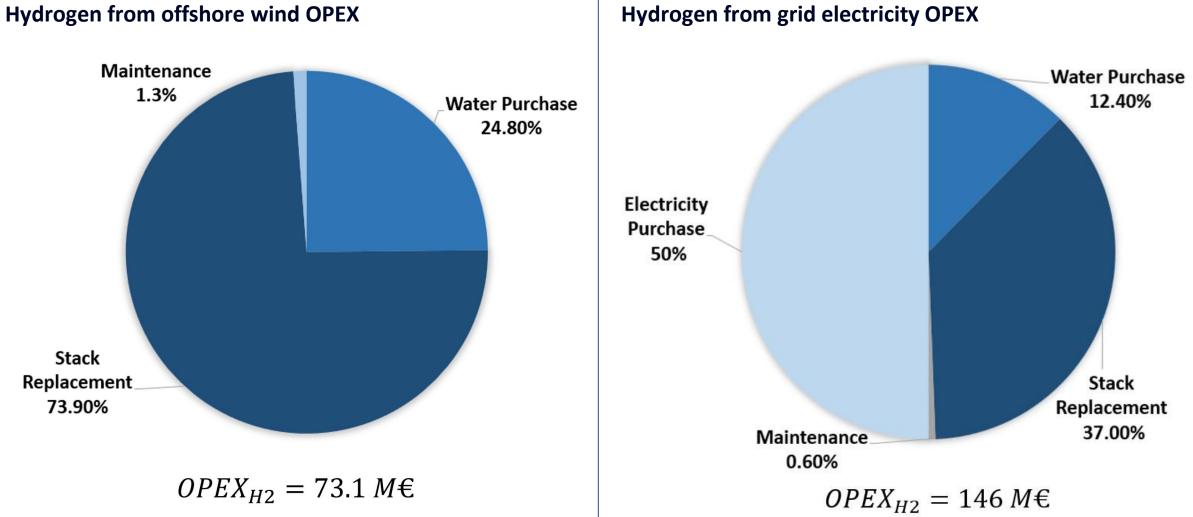
Hydrogen production

Average hourly production: 1555 kg

Hydrogen production during 500 hours


CAPEX RESULTS

Wind Farm CAPEX

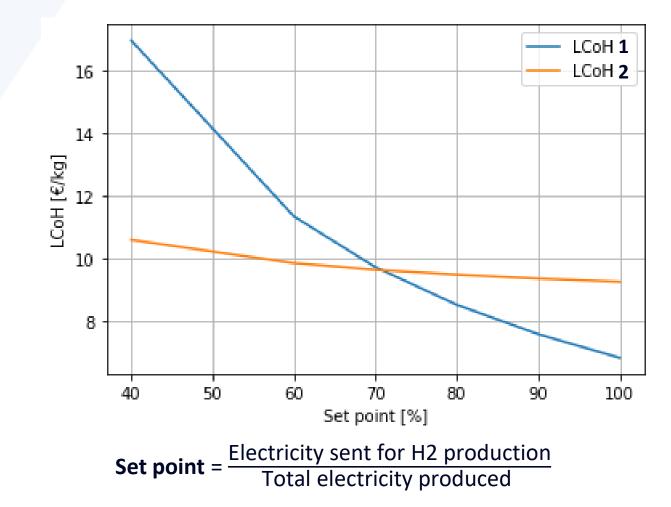

Wind Turbines OSS Installation Installation 3.90% 0.20% Cables Wind Turbines 27.50% 39.70% Cables Installation 1.30% Monopiles Monopiles Installation 25% 2.40% $CAPEX_{WF} = 627 M \in$

Hydrogen Plant CAPEX

OPEX RESULTS

Hydrogen from grid electricity OPEX

RESULTS


LCoE and LCoH

LCoE from Mermaid wind farm
LCoE = 101.3 €/MWh

LCoH 1 | Using wind farm electricity
LCoH 1 = 6.76 €/kg

LCoH 2 | Using grid electricity
LCoH 2 = 9.26 €/kg

Setpoint effect on LCoH

KEY FINDINGS

- Comparing hydrogen generation strategies coupled or decoupled with an offshore wind farm is **possible**.
- The cost model is **versatile**: study case can be changed.
- LCoH is shown to be **highly dependent** on the electricity source.
- With **technological progress,** green hydrogen is expected to be competitive.

SITTIS

ENHAGEN

Thanks for listening

Q&A

<u>E-mail:</u> maelig.gaborieau@spinergie.com <u>LinkedIn:</u> Gaborieau Maëlig

SENSITIVITY ANALYSIS

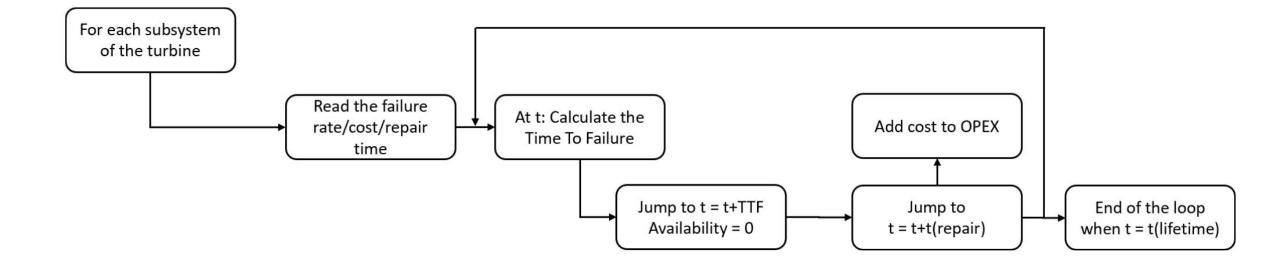
Results

Criterion	Base Case	New Scenario	Effect on LCoH1	New LCoH1 [€/kg]
Basic LCoH				6.76
Discount rate Discount rate	$6\% \\ 6\%$	${3\% \over 9\%}$	-14.35% + 15.5%	5.79 7.81
Total CAPEX Total CAPEX	772.5M 772.5M	695.25M 849.75M	-6.1% + 6.1%	$6.35 \\ 7.17$
Stack Efficiency Stack Efficiency Stack Degradation Stack Degradation	62% 62% 0.1%/1000h 0.1%/1000h	52% 72% 0.05%/1000h 0.2%/1000h	+19.1% -13.8% -1.8% +3.55%	8.05 5.83 6.64 7.00
Water Cost Water Cost	$\begin{array}{c} 3.7 \Subset /m^3 \\ 3.7 \Subset /m^3 \end{array}$	$\begin{array}{c} 3.4 \in /m^3 \\ 4 \in /m^3 \end{array}$	-0.15% +0.15%	6.75 6.77
Failure Rate H2	Base Case	Base Case * 10	+5.3%	7.12

CAPEX MODULE

Turbine Cost (Romeo Project)

Electrolyser Cost (Singlitico et al.)


 $Cost_{Turbines} = ((3 * 10^6) ln(MW) - 662400) * 1.16$

 $Cost_{Electrolyser} = P_{elec} RC_{elec} (\frac{P_{elec} \cdot 10^3}{RP_{elec}})^{SF_{elec}}$

OPEX AND REVENUE MODULE LOOP

Failure Loop

