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Context

* Ageing wind turbines can experience performance
decay (e.g. due to wear) or improvement (e.g. due to
control optimization)

* Performance is influenced by multiple factors:

ageing

maintenance

operative mode
environmental conditions

—

seasonality
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Factors not influencing
long-term performance




Motivation and Goal

* Monitoring and quantifying the long-term performance is required to evaluate the
return on investment

=» Isolating the impact of ageing on turbine performance is fundamental to make
informed decision on turbine lifetime extension

* Due tothe complex dynamics in which the turbine operates, there is no knowledge-
based model able to describe the effect of ageing on performance

=>» data-driven model are a viable solution for analyzing the aging effect

Goal: Develop a data-driven model to characterize the

performance trend of a turbine due to aging

om )
S INnNnovation

forward



Methodology
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Workflow
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| Primary mode Environmental factors Seasonality Performance
retention normalisation removal charaterization
Pri d tenti

Power curve

O Al
2000 - Primary mode

Turbines can operate in multiple operating modes

* Primary mode: the turbine can extract the
maximum possible energy

* Secondary modes: the turbine extracts energy in a
suboptimal way (e.g. due to curtailment, failures)

1500 1

Power (kW)
)
o
o

=» The operating mode needs to be fixed to analyze 500-
performance trend

The operating mode is often not recorded by the SCADA - : - - —
system Wind speed (m/sec)

Goal: Filter raw sensor data to retain only data points in
ew theprimary mode
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Environmental factors normalization

To evaluate a turbine’s performance, the following factors need to be considered:
* active power
* environmental conditions

Once the environmental conditions are fixed, the turbine performance is described as

actual active power

efficiency = ,
11 Y expected active power

The expected active power is computed using a machine learning model

Goal: Factor out environmental factors from turbine performance
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Turbine performance can present a seasonal
variability:

* Not all seasonal factors are known or tracked (e.g. icing)

Seasonality is removed via two state-of-the-art methods:

* Year-over-Year degradation detection (YoY) [1]

* Seasonal and Trend decomposition using Loess (STL) [2]

Picture taken from: The conceptual design of a safety
system: For the sMW Deepwind offshore floating
vertical-axis wind turbine

Goal: Factor out the seasonal component from turbine
performance

[1] Validation of the PV Life model using 3 million module-years of live site data. Hasselbrink, E.F. et al., 2013
[2] Cleveland, R.B., Cleveland, W.S., McRae, J.E., and Terpenning, I. (1990). STL: A seasonal-trend OSIRRIS + CONFIDENTIAL * 2/05/2023
decomposition. Journal of Official Statistics 6, 3-73
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* Performance is reported in terms of trend and variability

STL-based YoY-based
. 100 A
' Performance trend: -0.36 % Performance:
. 80 Trend: -0.39 %
e | Variability: -0.45% to -0.29%
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— Observed performance
g —STL Trend curve i_y= -0.36 l ! 20 1
. —Fitting curve x -6 =-0. pto =-0.29
2004 2006 2008 2010 2012 2014 2016 2018 2020 0 ; :
> 2

Median =-0.39

Goal: Summarize actionable information from the evolution of turbine performance in terms of

performance trend and performance variability per year
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Results
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Dataset

Synthetic dataset

20 years data
Variables

Wind Speed

Wind direction

Air Density

Active Power (APyeq;)

Active Power_degraded (APgcg4)
Active Power_expected (APyp)

Real-world dataset

7 turbines
11 years of data
In 2018 the controller was modified
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alinear decay is
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Results

SYNTHETIC DATASET
Yearly loss evolution
* Performance Trend (PT): | -Realloss
—~ wm| - Expected loss (YoY-based)
¢ 0'0039 (YOY) E s0000{ = EXpectEd loss (STL-baSed)
« 0.0036 (STL) 5
—
o Real |OSS: AP'r‘eal - APdeg o 2064 20b6 20‘08 20‘10 year 2612 20‘14 20'16 20’18
* Expected loss: APy, — APgeg R2between real and expected loss is:
PT * # years * 0.97(STL)-0.99 (YoY)
1— PT = # years
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Efficiency

Efficiency

Results

REAL-WORLD DATASET
Performance evolution — Turbine o7
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Results

REAL-WORLD DATASET

Turbine performance during 2011-2022

. : YoY-based YoY-based STL-based
Wind Turbine -
performance trend | performance variability | performance trend
TO01 0.02 -0.26; 0.20 -0.38
T02 -0.04 -0.53; 0.31 0.00
T03 0.10 -0.30; 0.61] 0.11
T04 -0.20 -0.52; -0.01] 0.06
TO05 -0.04 [-0.53; 0.31] 0.15
TO06 -0.18 -0.43; 0.06] 0.10
TO7 0.42 [0.08; 0.60] 0.52
T !
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Results

REAL-WORLD DATASET

Turbine performance during 2011-2022

. : YoY-based YoY-based STL-based
Wind Turbine 1
performance trend | performance variability | performance trend
TO1 0.02 -0.26; 0.20] -0.38
T02 -0.04 -0.53; 0.31] 0.00
TO03 0.10 -0.30; 0.61] 0.11
T04 -0.20 -0.52; -0.01] 0.06
T05 -0.04 -0.53; 0.31] 0.15
TO06 -0.18 [-0.43; 0.06] 0.10
TO7 0.42 [0.08; 0.60] 0.52
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Results

REAL-WORLD DATASET
Turbine performance
2011-2022 2016 vs 2019
Wind Turbine YoY-based YoY-based
performance trend | performance trend
T01 0.02 -1.92
T02 -0.04
T03 0.10
T04 -0.20 -0.05
T05 -0.04 0.45
T06 0.18 r—
TO7 0.42
e ®

©SIRRIS « CONFIDENTIAL * 2/05/2023




Conclusions

* We presented a methodology to characterize turbine in the and

* The methodology can factor out confounding effects that can affect turbine
performance (e.g. weather, operative mode)

* Onasynthetic dataset, the methodology identified the induced performance decay

* On areal-case dataset, the methodology provided insights in performance evolution
in the long- and short-term

* Control optimization may not always have a positive effect on turbine performance
* Turbine performances tend to be rather stable over the years
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